
Brigham Young University – Masters Thesis Defense for Frank Sorenson

PODs: Physical Object DevicesPODs: Physical Object DevicesPODs: Physical Object DevicesPODs: Physical Object DevicesPODs: Physical Object DevicesPODs: Physical Object DevicesPODs: Physical Object DevicesPODs: Physical Object DevicesPODs: Physical Object Devices

PODs: Physical Object
Devices

Thesis Defense presentation
for

Frank Sorenson

February 19, 2004

Brigham Young University – Masters Thesis Defense for Frank Sorenson

MotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivation

� Programmers are often interested in controlling
and using electronic devices in their work

� Computer control of electronic devices can be
difficult

� Many programmers are more interested in
controlling and using devices, not constructing
them

� Skills lie in programming, not hardware design

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Difficulties controlling electronicsDifficulties controlling electronicsDifficulties controlling electronicsDifficulties controlling electronicsDifficulties controlling electronicsDifficulties controlling electronicsDifficulties controlling electronicsDifficulties controlling electronicsDifficulties controlling electronics

� Many different hardware interfaces makes choice
and compatibility difficult

� Some devices utilize specialized, proprietary
software

� Some devices do not have computer-usable
interfaces

� Time is often spent (wasted) designing and
maintaining electronics

� Solutions are often not flexible or extensible

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Previous workPrevious workPrevious workPrevious workPrevious workPrevious workPrevious workPrevious workPrevious work

� OOpic

� Programmable device can act as various components

� Low-level interface

� Lego Mindstorms

� Programmable, popular, many sensor types

� Limited input and output, hobby

� Phidgets

� Help abstract physical devices

� Not lightweight interface

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Our Thesis Statement on PODsOur Thesis Statement on PODsOur Thesis Statement on PODsOur Thesis Statement on PODsOur Thesis Statement on PODsOur Thesis Statement on PODsOur Thesis Statement on PODsOur Thesis Statement on PODsOur Thesis Statement on PODs

� By building intelligence into electronic devices
themselves, and by designing the electronics with
a common hardware interface and software
library, programmers can easily use electronic
devices directly in programs they write. PODs
provide an object-oriented programming
framework that allows the programmer to focus
on the use of the device, rather than low-level
details. This work demonstrates the feasability
and usefulness of this design method.

Brigham Young University – Masters Thesis Defense for Frank Sorenson

PODs: The VisionPODs: The VisionPODs: The VisionPODs: The VisionPODs: The VisionPODs: The VisionPODs: The VisionPODs: The VisionPODs: The Vision

� Hierarchy of object-oriented hardware
devices

� Programming environment treats hardware
as software

� Software library to simplify programming

� Hardware interface is standardized

� PODs can retain settings or be assigned
unique identifiers

� Little or no electronic knowledge is
required

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Hierarchy of hardware/software objectsHierarchy of hardware/software objectsHierarchy of hardware/software objectsHierarchy of hardware/software objectsHierarchy of hardware/software objectsHierarchy of hardware/software objectsHierarchy of hardware/software objectsHierarchy of hardware/software objectsHierarchy of hardware/software objects

� POD is a base class and has
certain standard properties

� Each POD type derives from
other POD classes and adds their
own unique features

� Programmers instantiate
hardware objects in their programs

� Complex hierarchies of POD
classes are possible

Brigham Young University – Masters Thesis Defense for Frank Sorenson

POD Hardware Interface - USBPOD Hardware Interface - USBPOD Hardware Interface - USBPOD Hardware Interface - USBPOD Hardware Interface - USBPOD Hardware Interface - USBPOD Hardware Interface - USBPOD Hardware Interface - USBPOD Hardware Interface - USB

� USB is a common interface

� Power and Data via the same wires

� Expandable to 127 devices

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Block diagram of each PODBlock diagram of each PODBlock diagram of each PODBlock diagram of each PODBlock diagram of each PODBlock diagram of each PODBlock diagram of each PODBlock diagram of each PODBlock diagram of each POD

� USB interface

� USB<->Serial connector

� Onboard
microcontroller

� Additional electronics

Brigham Young University – Masters Thesis Defense for Frank Sorenson

POD Programming and interactionPOD Programming and interactionPOD Programming and interactionPOD Programming and interactionPOD Programming and interactionPOD Programming and interactionPOD Programming and interactionPOD Programming and interactionPOD Programming and interaction

	 Programmer chooses POD by function

	 Attach POD to system

	 Configure POD settings or identifier (if desired)

	 Write simple program

	 Compile and link with POD library

	 Run application

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Simple programming – Thermometer PODSimple programming – Thermometer PODSimple programming – Thermometer PODSimple programming – Thermometer PODSimple programming – Thermometer PODSimple programming – Thermometer PODSimple programming – Thermometer PODSimple programming – Thermometer PODSimple programming – Thermometer POD

#include <stdio.h>
#include <libPOD.h>

int main(int argc, char *argv[])
{
 PODEnv *MyPODs;
 ThermometerPOD *Thermometer;
 float Temperature;

 MyPODs = new PODEnv();

 Thermometer = dynamic_cast<ThermometerPOD *>
 (MyPODs->FindPODbyType(POD_TYPE_THERMOMETER));
 if (Thermometer != NULL)
 {
 Thermometer->GetTemperature(&Temperature);
 printf("\%f", Temperature);
 }
 else printf("0"); /* if no Thermometer POD is connected */
 printf("\n0\n0\n0\n");
}

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Building a POD – Initial designBuilding a POD – Initial designBuilding a POD – Initial designBuilding a POD – Initial designBuilding a POD – Initial designBuilding a POD – Initial designBuilding a POD – Initial designBuilding a POD – Initial designBuilding a POD – Initial design

 Determine functions POD will perform

 Breadboard possible designs

 Choose components and design

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Building a POD – Hardware constructionBuilding a POD – Hardware constructionBuilding a POD – Hardware constructionBuilding a POD – Hardware constructionBuilding a POD – Hardware constructionBuilding a POD – Hardware constructionBuilding a POD – Hardware constructionBuilding a POD – Hardware constructionBuilding a POD – Hardware construction

� Create schematic

� Design PCB based on schematic

 Manufacture and build POD

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Building a POD – SoftwareBuilding a POD – SoftwareBuilding a POD – SoftwareBuilding a POD – SoftwareBuilding a POD – SoftwareBuilding a POD – SoftwareBuilding a POD – SoftwareBuilding a POD – SoftwareBuilding a POD – Software

� Program microcontroller and test POD

� Write POD software interface class
#ifndef __THERMOMETERPOD_H__
#define __THERMOMETERPOD_H__

#include "PODDefines.h"
#include "POD.h"

class ThermometerPOD : public POD
{
 public:
 ThermometerPOD();
 ThermometerPOD(int DeviceNum,int PortNum);
 ThermometerPOD(int DeviceNum);
 int GetTemperature(float &ReturnTemp);
 int GetUnits();
 int SetUnits(char Units);
 virtual int Test();
 protected:
 int ProcessAlert();
 private:
};

#endif /* __THERMOMETERPOD_H__ */

Brigham Young University – Masters Thesis Defense for Frank Sorenson

PODs implementedPODs implementedPODs implementedPODs implementedPODs implementedPODs implementedPODs implementedPODs implementedPODs implemented

� Thermometer POD

� Light Sensor POD

� Compass POD

� Motor Control POD

� Buttons POD

� Light Emitting Diode (LED) POD

� Sonar Distance Sensor POD

� Alarm POD

� Power Sensor POD

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Demo – Light sensorsDemo – Light sensorsDemo – Light sensorsDemo – Light sensorsDemo – Light sensorsDemo – Light sensorsDemo – Light sensorsDemo – Light sensorsDemo – Light sensors

� Multiple light sensors require unique
identification

� PODEdit utility

� Assign PODs 'Left' and 'Right'

� Alarm indicates which sensor is measuring
greater light

� 1 beep Left

� 2 beeps Right

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Demo – Robot movementDemo – Robot movementDemo – Robot movementDemo – Robot movementDemo – Robot movementDemo – Robot movementDemo – Robot movementDemo – Robot movementDemo – Robot movement

� MotorControl PODs cause robot to turn
to each side and go forward and backward

 while ((CurrentTime – StartTime) < 60.0)
 {
 MyRobot->Right();
 usleep(1000000);
 MyRobot->Forward(50);
 usleep(500000);
 MyRobot->Backward(50);
 usleep(500000);
 MyRobot->Left();
 usleep(1000000);
 }
 MyRobot->Stop();

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Demo – Robot finding NorthDemo – Robot finding NorthDemo – Robot finding NorthDemo – Robot finding NorthDemo – Robot finding NorthDemo – Robot finding NorthDemo – Robot finding NorthDemo – Robot finding NorthDemo – Robot finding North

 MyRobot = new Robot();

 CurrentHeading = MyRobot->Heading();
 MyRobot->Right();
 while ((CurrentHeading > 10.0) && (CurrentHeading < 350.0))
 {
 CurrentHeading = MyRobot->Heading();
 }
 MyRobot->Stop();

class Robot : public PODEnv
{
 public:
 Robot();
 int Forward(unsigned char Speed);
 int Backward(unsigned char Speed);
 int Left();
 int Right();
 int Stop();
 float Heading();

 protected:
 MotorControlPOD *LeftMotor;
 MotorControlPOD *RightMotor;
 CompassPOD *Compass;
. . .

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Conclusions – POD benefitsConclusions – POD benefitsConclusions – POD benefitsConclusions – POD benefitsConclusions – POD benefitsConclusions – POD benefitsConclusions – POD benefitsConclusions – POD benefitsConclusions – POD benefits

 PODs are object-oriented, have a uniform
interface, and are easy to integrate into programs

! Programmers make fewer decisions that affect the
electronics

" PODs are flexible and hardware is easily reused
in other projects

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Conclusions – Possible Future WorkConclusions – Possible Future WorkConclusions – Possible Future WorkConclusions – Possible Future WorkConclusions – Possible Future WorkConclusions – Possible Future WorkConclusions – Possible Future WorkConclusions – Possible Future WorkConclusions – Possible Future Work

Minimize and Miniaturize PODs

$ Build additional interesting devices

% Investigate object-oriented properties further

& Improve hardware and software used with PODs

' Investigate additional hardware interfaces

(Web-enabled PODs

Brigham Young University – Masters Thesis Defense for Frank Sorenson

Final RemarksFinal RemarksFinal RemarksFinal RemarksFinal RemarksFinal RemarksFinal RemarksFinal RemarksFinal Remarks

) We designed an object-oriented programming
environment that allows simple control of
electronic hardware

* We demonstrated the use of PODs through case
studies

+ We built intelligence into the PODs themselves,
developing a useful method for computer control
of hardware

Questions?

