
A System-Assisted Disk I/O Simulation Technique

Franklin E. Sorenson Elizabeth S. Sorenson J. Kelly Flanagan Heng Zhou
sorenson@byu.edu leb@pel.cs.byu.edu kelly@cs.byu.edu heng@pel.cs.byu.edu

Performance Evaluation Laboratory
Brigham Young University

Provo, UT 84604

Abstract

Simulation and modeling are useful tools in prototyping
advances in many areas of technology. The performance
of modern processors advances much faster than that of
storage components making disk systems prime candidates
for simulation. Simulating disk systems allows researchers
to determine and quantify the performance impact of
alternative file system designs and disk data rearrangement
techniques. This paper describes a System Assisted disk
I/O Simulation Technique (SAST). This technique uses a
real system to estimate disk request service times, relieving
the researcher from the burden of modeling the target
system. The system accepts disk trace data as input, and
accurately predicts disk service times. In addition, we
describe a disk trace collection technique capable of
collecting accurate trace data from the Windows 95
operating system.

1. Introduction

Processor speed has increased much faster than disk I/O
performance over the past few years. VLSI performance
has improved at a rate of 40-60% per year while disk drive
performance has improved approximately 7% per year [1],
and this trend continues. The increasing performance gap
between processors and disk subsystems limits overall
system performance, and has drawn more and more
attention. A significant amount of research has been
performed to improve disk performance, including new file
systems [2, 3], more efficient disk buffer strategies [4, 5],
I/O scheduling [6], and redundant arrays of inexpensive
disks [7].

Simulation is commonly used to evaluate the
performance of proposed system configurations. Previous
studies to improve disk I/O performance have been
performed using trace-driven simulation [8, 9, 10]. The
accuracy of trace-driven simulation depends on the quality

of the simulation model, and the quality of the input trace
data [11].

In this paper, we propose a new, simple, and accurate
simulation technique: a System-Assisted disk I/O
Simulation Technique (SAST). In addition, we present a
technique that collects accurate disk I/O traces that contain
precise timing information from a Windows 95 system.

1.1. Previous disk subsystem simulation techniques

Previous research has generated three types of disk
subsystem simulation models: abstract simulation models,
detailed simulation models, and stochastic techniques.

Abstract simulation model. Abstract models were first
used to answer simple performance questions [9, 10].
These simplistic models ignore the system details; they
typically assume that every disk request requires a constant
amount of time, ignoring the current disk head position and
averaging the seek time and rotation delay. Slightly more
elaborate models [10] acknowledge that disk I/O service
times vary, and consist of seek time, rotational latency, and
transfer time. The disk seek time is usually assumed to be
linear with seek distance, without consideration for head
acceleration and settling. Although simulation with
abstract models is quite simple, these models often produce
inaccurate results. These simple techniques are not
sufficient for the study of subtle details in disk I/O
subsystems.

Detailed simulation model. Detailed simulation
models have been used to produce more accurate results.
These techniques model and parameterize the components
of disk I/O subsystems in detail, and then simulate their
behavior with software written in high-level programming
languages [12, 13, 14]. The accuracy of these models
depends on included details and the validity of the input
parameters describing each component. If the target system
is well understood and accurate parameters are obtained,
detailed simulation models can yield very accurate results.
To model the disk I/O subsystem, several key components,

including device drivers, system buses, I/O buses, disk
controllers, and disk mechanisms need to be analyzed. It is
not trivial to model all the components and obtain their
input parameters. In the simulator presented in [12], the
disk drive modeling alone requires approximately 13,000
lines of commented C++ code.

Detailed simulation models require correct input
parameters describing each component in the target system.
Though disk drive technical reference manuals can often be
obtained directly from the manufacturer, the manuals are
usually incomplete, and their accuracy is questionable. The
on-line extraction of SCSI disk drive parameters, proposed
in [15], uses special tools and test vectors to drive SCSI
disks and extracts the desired drive parameters. This
technique requires a large amount of work to find the
necessary details, and does not work for other I/O protocols
such as IDE disks.

Stochastic simulation technique. The stochastic disk
I/O simulation technique proposed in [16] models the target
system by generating the system’s service time distribution
from long trace data. For each possible combination of
disk seek distance, request length, and disk operation
(read/write), the probability distribution of disk service
times is obtained. Accordingly, the simulator estimates the
service time for an I/O request, resulting in a distribution of
service times equal to the retrieved distribution.

The stochastic simulation technique abstracts the
system, relieving the researchers from the burden of
obtaining specific input parameters, and creating detailed
models. However, to model disk subsystems accurately,
this technique requires trace data which exhausts all disk
access patterns, and generates a disk service time
probability distribution. Since the disk service time for an
I/O request is randomly estimated according to the retrieved
distribution, the simulation results are accurate for a large
number of I/O requests, but not necessarily accurate for
individual requests.

1.2. Previous workload generation techniques

In addition to simulation models, representative
workloads are also critical to the accuracy of trace-driven
simulation. Two common input workloads are synthetic
workloads and traces.

Synthetic workloads. Some previous disk subsystem
research was performed using synthetic workloads [9].
Synthetic workloads are generated on-the-fly, and consist
of a series of I/O requests which may represent an average
workload. Synthetic workloads are more flexible than
traces, and do not require significant storage, however, they
are specific to a single environment, and generally do not
make representative disk references [19]. In addition,
synthetic workloads are difficult to parameterize [13]. For

example, an NFS-workload generator described in [17]
uses 24 parameters to describe the workload.

Traces. Even though much can be learned from
synthetic workloads, traces collected from various real-
world systems often yield more accurate results. Most
available trace data is collected at the file-system level,
before the operating system disk cache, but does not
contain high resolution timing information. This kind of
trace data is useful for evaluating disk cache strategies, but
is not accurate for investigating low-level disk subsystems.

The disk trace collection technique proposed in [1]
collects the disk requests after the operating system disk
cache, and contains the requests that are actually made to
the hard disk. The service time contained in the trace data
has the resolution of one microsecond, and is more accurate
than most file-system level traces. This technique was
implemented in release 8 of the HP-UX operating system.
A similar technique was used to collect trace data from a
Novell Netware based system [16].

2. Disk I/O trace collection technique

In this section, we describe a disk trace collection
technique for the Windows 95 operating system. Our trace
collection technique gathers disk requests after the
operating system disk buffer and includes detailed timing
information.

2.1. Disk trace collection tool

Our disk trace collection tool consists of two
components. One component is a virtual device driver
(VxD) which intercepts and stores all disk requests. The
other component is a Windows application by which we
can start and stop tracing and log the buffered disk requests
to secondary storage. Figure 1 shows the structure of our
disk trace collection tool.

2.1.1. Disk trace collection VxD. A layered virtual device
driver model characterizes the disk subsystem in Windows
95. The Input/Output Supervisor (IOS) coordinates the
layered device drivers and VxD’s, allowing a hardware or
software vendor to implement nonstandard, proprietary, or
additional functionality. The IOS issues I/O requests and
returns results, acting as an interface between clients such
as file system drivers and the page swapper [18]. We used
the functionality provided by this layered approach to
create a VxD, allowing us to incorporate the trace
collection function into the Windows 95 I/O subsystem.

Our trace collection VxD registers itself with the IOS,
and inserts functions into the list of functions called when
issuing I/O requests. As I/O requests pass through the
function list, we store disk request information into a

Buffer 2

OnRequest()

If (istracing) {
 InsertCallBack
(onRequestComplete);
 Gettimer();
 Retrieve information,
 Write into buffer;
}

OnRequestComplete()

Gettimer();
Retrieve information,
Write into buffer.

Start tracing

Callback() {
Write buffered
information
into secondary
storage
}

Stop tracing

Buffer 1

Figure 1. The structure of our disk trace collection tool.

buffer. When I/O requests complete, another function in
the VxD stores the completion information.

As a result of these functions in the VxD, the
information for each request is stored in the buffer when a
request starts and when it completes. Each trace entry is
time stamped to the nearest microsecond using a precise
timer built into the CPU, which is accurate to a single CPU
cycle. In our 450 MHz test system, this is 2.22
nanoseconds. The time stamp for each entry in the trace
represents the elapsed time since the previous entry.

Two buffers are used to store disk requests. When one
buffer is full, storage shifts to the other buffer, and the
VxD informs the Windows application to retrieve the trace
data, thereby emptying the first buffer.

2.1.2. Trace collection control application. The control
application for our trace tool is a Windows 95 application
that controls the trace collection VxD. It starts and stops
tracing and empties buffered disk requests by writing them
to secondary storage when the VxD informs the Windows

application that its buffer is full. Windows 95 provides the
communication mechanism between the VxD and the
Windows application.

2.2. Trace data format

The recorded information for each disk request is
organized into a six-element, twelve-byte structure:

1 Request type, one byte.
2 Major device number, one byte.
3 Minor device number, one byte.
4 Starting sector number, four bytes.
5 Request length in sectors, one byte.
6 Elapsed time since last request, four bytes.
Possible request types include Read, Write, and Done.

A Done request indicates that a previous Read or Write
request has been completed. The major and minor device
number fields identify the device as a hard disk, and which
disk is involved in the disk request. The sector number
identifies the physical sector number where the request

741.4 729.8 718.8

0

100

200

300

400

500

600

700

800

BNplain BNvxd BNretrieve

System Configuration

I/O
 t

h
ro

u
g

h
p

u
t

 (
K

b
yt

es
/s

ec
)

Figure 2. The I/O throughput of the business disk WinMark97 suite with both the disk trace
collection VxD and the control application disabled (left), with only the VxD enabled
(center), and with both the VxD and the application enabled (right).

begins. The time stamp is the elapsed time since the
previous entry in the trace (in microseconds). By matching
a done request with its corresponding read or write request,
it is possible to determine how long it took to process the
request. These records, stored in sequential order, make up
a trace.

2.3. Evaluation of our disk trace collection tool

Traces gathered using our trace collection tool are
complete and accurate; all the disk requests are collected,
and every entry collected is valid. Precise time stamps are
contained in our traces. This section describes and
quantifies the impact of the trace collection process on
system performance.

Performance degrades in two aspects. First, as
previously described, the disk trace collection VxD
introduces two functions. The two functions are inserted
into the calldown function list and callback function list for
disk requests respectively. Each disk request needs to go
through these two functions to allow information gathering,
increasing the service time. Secondly, when one of the two
buffers in the disk trace collection VxD is full, an
asynchronous procedure call is scheduled to have the
Windows application store the buffered requests to disk.

Additional disk requests are generated. In the standard
configuration, our tool adds three I/O requests for every
thousand normal requests.

The WinBench97 benchmark is a subsystem-level
benchmark that measures the performance of a PC’ s major
subsystems, such as graphics, disk, processor, video, and
CD-ROM subsystems in a Windows95/NT based
environment. The disk test suite of the WinBench97
benchmark reflects the performance of a PC’ s disk
subsystem in Windows. The Business Disk WinMark97
test represents the disk activity of popular business
applications.

Figure 2 illustrates the effect our tool has on system
performance. Each bar represents the average I/O
throughput from five runs of the Business Disk
WinMark97 suite. The leftmost bar is the average I/O
throughput while running the suite with both the trace
collection VxD and the control application disabled. The
center bar represents the average I/O throughput while
running the suite with the VxD enabled, but with the
application disabled. The rightmost bar is the average I/O
throughput while running the suite with both the VxD and
the application enabled. From Figure 2, we can see that the
trace collection VxD alone slows the system down by
1.56%. The trace collection VxD together with the control

application slows the system down by 3%.
In summary, our trace collection tool consists of a VxD

and a control application. It acquires complete and
accurate traces with precise time stamps, with a dilation of
only 3%.

3. System-assisted disk simulation technique
(SAST)

3.1. Overview

The basic concept behind SAST is to use an actual hard
disk to return the service times of I/O requests. Disk I/O
trace data is submitted as I/O requests to a dedicated
physical disk on a real system. The returned service times
are the output of SAST.

SAST is not intended for those wishing to investigate
new disk drive technology that currently does not exist, but
is intended for use by those evaluating system software
such as file systems, disk data rearrangement techniques,
etc.

SAST requires several things to return useful and
accurate results. First, all disk requests are made to a
dedicated secondary disk where no post operating system
or user program requests will perturb the results. This also
ensures that arbitrary write requests can be performed
without fear of corrupting any file-system related
information. Second, direct access to the disk drive is
required. This allows SAST to ignore effects caused by the
operating system, such as operating system disk cache or
prefetch buffers. Third, SAST requires a high-resolution
timer. The timer is read at the beginning of the request, and
again at its completion. This allows the simulator to return
precise results for service times and also gives the simulator
an accurate timer to determine when to issue requests to the
disk.

3.2. Methodology

In order to accurately model a disk I/O subsystem, we
must take into account the inter-arrival rate of I/O requests.
The inter-arrival rate may affect the behavior of the drive
mechanism, and the time each request spends in the I/O
queue. Since traces reflect the characteristics of the system
from which they are collected, we must adapt trace data to
reflect the characteristics of the system of interest.

User applications can be thought of as consisting of two
segments of time: disk I/O time and CPU processing time
preparing for more I/O. To allow for differences in the
performance of various disk mechanisms, as well as to
accurately model the CPU time required for processing, our
simulator issues I/O requests asynchronously. We also
chose to hold constant the time attributed to the CPU,

removing differences in processing power from the model.
This is not an issue in this work since the entire system
remains constant other than the disk mechanism.

The behavior of the I/O queue is directly simulated by
issuing requests when the number of I/O requests
completed matches the number completed at the same point
in the input trace. SAST must determine when to issue
each Read or Write request. To determine how long to wait
before issuing a Read or Write request, SAST considers
whether the previous trace entry was a request (Read or
Write) or a report of completion (Done).

If the previous trace entry was a request, the elapsed
time in the trace represents CPU processing time. The
simulator models the behavior of the CPU by waiting the
elapsed time from the issue of the previous request to the
next request, then issuing the request. If the previous entry
was a Done, the elapsed time includes time waiting for disk
I/O as well as CPU processing time. This behavior is
modeled by waiting until the length of the I/O queue
matches the length indicated in the trace, then waiting until
the required time has passed since the previous request.

For example, consider the disk requests and trace data
shown in Figure 3. SAST begins by issuing the first
request, Read0. Since the next request, Read1, is issued
before Read0 is completed, t1 represents CPU processing
time. Therefore, SAST waits time t1 before issuing Read1.
The next request, Read2, is issued after Read0 is complete,
but before Read1 is complete. In this case, t2 represents
time spent waiting for disk I/O, and t3 represents CPU
processing time. So SAST first waits until the length of the
disk queue equals 1, because the length of the queue in the
trace equaled 1 just prior to Read2. SAST next waits time
t3, and then issues Read2. The final request in this
example, Read3, is similar to Read2. SAST first waits
until the disk queue length equals 0, then waits time t6, and
then issues Read3.

This method attempts to simulate the behavior of the
I/O queue. The length of the queue characterizes the
interaction of workloads and I/O mechanisms better than
the inter-arrival times alone, since the processor depends on
data received in previous requests, and issues the next
requests based on what information it computes. Also,
since this method is independent of disk speed, we can
apply this method to various disks.

3.3. SAST for Windows 95

To demonstrate the feasibility and efficiency of SAST,
we implemented and evaluated SAST using a Windows 95
system. We used a Pentium II 450, giving a timer
resolution of 2.22 nanoseconds. The simulation system we
developed for Windows 95 relies on two components.

The first component is a virtual device driver (VxD).

This VxD is a file system driver (FSD), which has direct
access to the I/O Subsystem. The second component is a
Win32 application which drives the VxD to simulate I/O
requests acquired from trace data. This application uses
traces collected using the disk trace collection tool
previously described.

3.4. Evaluation of SAST

This section will demonstrate the accuracy of SAST by
comparing the service time distribution from the input trace
data with the service time distribution output by SAST. We
will first describe our evaluation process in general and
then give a specific example.

First, we collect trace data from disk A running our
workload, resulting in trace TA. We then simulate disk A
using SAST with input trace TA. Clearly the service time
distribution of TA and the service time distribution output
by SAST should be identical.

Then, using a second drive B, we collect a new trace TB

from the same workload used to create TA. Though TA and
TB contain the same requests, they have vastly different
service and inter-arrival times. We simulate drive A using
SAST with input trace TB. Again, the service time

distribution of TA and the service time distribution output
by SAST should be the same because SAST should remove
the mechanism specific features such as service times from
TB. This demonstrates that any trace TX of a workload
acquired on disk X can be used as input to SAST to
simulate a disk Y’ s response to the workload that produced
TX.

3.4.1. Workload selection. Evaluation of SAST requires
a workload which generates a repeatable disk request
sequence. When applications load from disk, they tend to
request nearly the same disk blocks in nearly the same
order. Since application startup provides an almost
deterministic disk request sequence, we chose to launch a
series of eight applications, with a set time between each
application start.

We used Microsoft Visual C++ 6.0, Microsoft Word 97,
WordPerfect 8, Microsoft Excel 97, Quattro Pro 8, Internet
Explorer 4, Netscape Communicator, and Corel
Presentations 8. After launching each application, our
evaluation program slept for long enough to allow the
application to load, then proceeded with the next
application. This process generated about 4700 disk
requests, in a simple repeatable series.

When selecting traces for input to SAST, we attempted
to acquire an average trace of our workload. We define
average as the trace with the total service time closest to the
mean of the total service times of all collected traces. To
determine how many traces were required to achieve
confidence that the mean total service time was accurate to
within 0.01 ms, we used the following formula:

where n is the number of traces required, t is the Student’ s
t distribution value, s is the standard deviation of the total
service times of the traces, r is the desired accuracy, and 0
is the mean of the total service times of the traces. For disk
A, we used an 8 Gigabit Western Digital drive. Using this
method, we found that we required 8 traces collected from
disk A to achieve a 90% confidence that the mean of the
total service times was 23.48 seconds. We chose the trace
with the total service time closest to the mean of the total
service times and refer to it as TA.

3.4.2. Two specific examples. Using TA as input to SAST,
we again used the above equation to determine the number
of simulations we needed to achieve a 90% confidence that
the mean of the total service time output by SAST was
within a 0.01 ms accuracy. Only two simulations were

TRACE ENTRIES

Read0 t0 � queue = 1
Read1 t1 � queue = 2
Done0 t2 � queue = 1
Read2 t3 � queue = 2
Done1 t4 � queue = 1

Figure 3. Sample disk requests and
associated trace.

Figure 4. The service time distribution of TA with the service time distribution of SAST
simulating disk A using TA as its input.

necessary to provide this accuracy. Figure 4 shows the
service time distribution of TA and the output of SAST with
TA as input; the curves are nearly identical.

To compare the two distributions, we use the root mean
square error technique proposed in [12]. This technique
computes the root mean square of the horizontal distance
between the two curves. We used this absolute error, along
with the average service time in the original trace to
compute a percentage error.

We found that the absolute root mean square error
between the two distributions is 0.178 ms, and the average
service time of the original trace is 5.03 ms, resulting in an
error of 3.54%. In addition, the 90% confidence interval
of the average service time from trace TA is 5.03 ms ±
0.168 ms, and the simulation output yielded a confidence
interval of 4.93 ms ± 0.161 ms. Notice that each 90%
confidence interval includes the mean of the other interval.
Therefore the two means are not statistically different from
each other at the 90% confidence level. From this, we can
see that there is not a significant difference between the
original disk drive and the simulated disk mechanism.

For the second part of the SAST validation, we picked
a 2 GB Western Digital drive as our drive B. This time, we
took 16 traces to satisfy the previously cited statistical
equation. The mean total service time for disk B was 50.52

seconds. Again we chose the trace, TB, with the total
service time closest to the mean of the total service times.
Using TB as input, we simulated disk A using SAST.
Figure 5 shows the service time distribution of TA and the
output of SAST driven with TB. Again, notice how close
the two distributions are. The absolute root mean square
error between the two distributions is 0.411 ms, or a
percentage error of 8.17%. This shows that SAST can
closely predict disk I/O performance of an input trace
collected from other disk subsystems.

SAST can also be used to accurately simulate a set of
disk drives using a single input trace. This can be useful
for evaluating the performance of various disks for a
particular workload of interest. Given a benchmark trace,
several drives can be simulated to determine which
performs best on the given workload.

4. Conclusions and future work

4.1. Conclusion

We designed a simple and accurate system to simulate
disk activity with the aid of a real-world system. In
addition, we developed a disk trace collection tool to
collect disk traces in a Windows 95 environment. The

Figure 5. The service time distribution of TA with the service time distribution of SAST
simulating disk A using TB as input.

collected trace data includes precise timing information,
which we used as input to our simulator. The high quality
of our trace data and simulation model led to accurate
simulation results.

SAST provides a fast way to prototype and evaluate
changes to operating system cache or prefetch algorithms,
file system changes such as block size, or future
performance evaluation techniques, such as reorganization
techniques or dedicating part of the hard disk as a cache for
frequently accessed blocks.

4.2. Advantages of SAST

The system-assisted disk simulation technique has
several advantages over previous approaches:
 1. SAST is easy to implement. It eliminates the need to
create a detailed model of the disk subsystem and obtain
input parameters. Since the real-world system is available,
we can use a real disk to provide actual service times.

2. The simulation results using SAST are accurate
within acceptable ranges for both large and small numbers
of requests.

3. SAST is easily portable to different systems and disk
subsystems as long as we can gain direct access to disks.
SAST can also be used to model more complex systems,

such as RAID.
4. Using SAST, it is possible to do research in a

completely file-system independent manner. This allows
researchers to prototype changes to file-systems or research
performance optimizing techniques without writing file-
system tools for each environment.

A potential disadvantage of SAST is that the service
time contributions of individual disk subsystem
components are hard to distinguish. The estimated service
time includes device driver time, bus transfer time, disk
controller overhead, and disk access time, so it is difficult
to determine what fraction of time each portion takes. For
some studies, this is insignificant, but in others, it is a
drawback.

Another disadvantage of SAST is that the simulator can
not be used in the study of hypothetical disk mechanisms.
If no real-world system exists to assist the simulation,
detailed simulation models must be used. However, though
SAST can’ t model hypothetical disk mechanisms, SAST
can be used in conjunction with a simulation model in a
hybrid approach. This approach could be used in
evaluating RAID systems, where SAST provides the
service time distribution for the disks, and a detailed
simulation model models the remaining portions of the
system.

4.3. Future work

We plan to implement and evaluate SAST with other
operating systems besides Windows 95. Our studies of the
Windows NT and Linux systems suggest that it would be
easy to implement SAST in these systems.

Acknowledgments

We would like to thank Knut Grimsrud of Intel Corporation
for his valuable insights and ideas which motivated this
work.

References

[1] Chris Ruemmler and John Wilkes, “UNIX disk access
patterns”, USENIX Winter 1993 Technical Conference
Proceedings, 1993, pp. 405-420.

[2] Mendel Rosenblum and John K. Ousterhout, “The design and
implementation of a log-structured file system”, Proceedings of
13th ACM Symposium on Operating Systems Principles,
Association for Computing Machinery SIGOPS, October 1991,
pp. 1-15.

[3] P. Cao, E. W. Felten, A. Karlin, and K. Li, “Implementation
and performance of integrated application-controlled file caching,
prefetching, and disk scheduling”, ACM Transactions on
Computer System, 14(4):311-343, November 1996.

[4] Tracy Kimbrel, Andrew Tomkins, R. Hugo Patterson, Brian
Bershad, Pei Cao, Edward Felten, Garth Gibson, Anna R. Karlin,
and Kai Li, “A trace-driven comparison of algorithms for parallel
prefetching and caching”, Proceedings of the 1996 Symposium on
Operating Systems Design and Implementation, pp. 19-34,
USENIX Association, October 1996.

[5] K. Grimsrud, J. Archibald, and B. Nelson, “Multiple prefetch
adaptive disk caching”, IEEE Transactions on Knowledge and
Data Engineering, February 1993.

[6] Bruce L. Worthington, Gregory R. Ganger, and Yale N. Patt,
“Scheduling algorithms for modern disk drives”, Proceedings of
the Sigmetrics Conference on Measurement and Modeling of
Computer Systems, pp. 241-251, ACM Press, May 1994.

[7] David Patterson, Garth Gibson, and Randy Katz, “A case for
redundant arrays of inexpensive disks (RAID)”, ACM SIGMOD
88, pp. 109-116, June 1988.

[8] J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer,

and J. Thompson, “A trace driven analysis of the UNIX 4.2 BSD
file system”, Proceedings of the 10th ACM Symposium on
Operating System Principles, pp. 15-24, December 1985.

[9] P.M. Chen and D.A. Patterson, “Maximizing performance in
a striped disk array”, Proceedings of the 17th Annual Symposium
on Computer Architecture, pp.322-331, May 1990.

[10] Richard R. Muntz and John C.S. Lui, “Performance analysis
of disk arrays under failure”, Proceedings of the 16th Conference
on Very Large Databases, pp. 162-173, 1990.

[11] J. Kelly Flanagan, Brent E. Nelson, James K. Archibald, and
Knut S. Grimsrud, “Incomplete Trace Data and Trace Driven
Simulation”, Proceedings Of the International Workshop on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems MASCOTS, pp. 203-209, SCS,
1993.

[12] Chris Ruemmler and John Wilkes, “An Introduction to Disk
Drive Modeling”, IEEE Computer, pp. 17-28, March 1994.

[13] C. A. Thekkath, J. Wilkes, and E. D. Lazowska, “Techniques
for File System Simulation”, Technique reports HPL-92-131 and
92-09-08, Hewlett-Packard Laboratories, Palo Alto, Calif., and
Dept of Computer Science and Eng., Univ. of Washington,
Seattle, Washington, Oct. 1992.

[14] David Kotz, Song Bac Toh, and Sriram Radhakrishnan, “A
Detailed Simulation Model of the HP 97560 Disk Drive”,
Technique Report PCS-TR94-220, Department of Computer
Science, Dartmouth College, July 1994.

[15] B. Worthington, G. Ganger, Y. Pratt, and J. Wilkes, “On-line
Extraction of SCSI Disk Drive Parameters”, Proceedings of 1995
ACM SIGMETRICS, Pages 146-156, ACM, 1995.

[16] Niki C. Thornock, Xiao-Hong Tu, and J. Kelly Flanagan, “A
Stochastic Disk I/O Simulation Technique”, Proceedings of the
1997 Winter Simulation Conference, Pages 1079-1086, 1997.

[17] Roberta A. Bodnarchuk and Richard B. Bunt, “A Synthetic
Workload Model for a Distributed System File Server”,
Proceedings of the 1991 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, Pages 50-59,
May 1991.

[18] Walter Oney, “Systems Programming for Windows 95",
Microsoft Press, 1996.

[19] Raj Jain, “The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Measurement,
Simulation, and Modeling”, John Wiley & Sons, Inc., 1991.

